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Abstract. We propose a new algebraic multigrid (AMG) method for solving the eddy current
approximations to Maxwell’s equations. This AMG method has its roots in an algorithm proposed
by Reitzinger and Schöberl. The main focus in the Reitzinger and Schöberl method is to maintain
null-space properties of the weak ∇ × ∇× operator on coarse grids. While these null-space prop-
erties are critical, they are not enough to guarantee h-independent convergence rates of the overall
multigrid scheme. We present a new strategy for choosing intergrid transfers that not only maintains
the important null-space properties on coarse grids but also yields significantly improved multigrid
convergence rates. This improvement is related to those we explored in a previous paper, but is fun-
damentally simpler, easier to compute, and performs better with respect to both multigrid operator
complexity and convergence rates. The new strategy builds on ideas in smoothed aggregation to
improve the approximation property of an existing interpolation operator. By carefully choosing the
smoothing operators, we show how it is sometimes possible to achieve h-independent convergence
rates with a modest increase in multigrid operator complexity. Though this ideal case is not always
possible, the overall algorithm performs significantly better than the original scheme in both itera-
tions and run time. Finally, the Reitzinger and Schöberl method, as well as our previous smoothed
method, are shown to be special cases of this new algorithm.

Key words. Maxwell’s equations, eddy currents, AMG, multigrid, smoothed aggregation.

AMS subject classifications. 76D05, 76D07, 65F10, 65F30

1. Introduction. We consider the 3D eddy current formulation of Maxwell’s
equations:

∇×∇× ~E + σ ~E = ~f, (1.1)

with Neumann, Dirichlet, or periodic boundary conditions, where ~E is the unknown
electric field to be computed, σ is the spatially-varying electrical conductivity, and
~f is the known right-hand side. We assume that (1.1) is discretized with first-order
edge elements on arbitrary unstructured meshes so that the following vector identity
is preserved in a discrete sense:

∇× (∇φ) = 0. (1.2)

This identity states that gradients of scalar functions lie within the kernel of the curl
operator. The discrete version of (1.1) is denoted by

K
(e)
1 e1 = f1, (1.3)
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where K
(e)
1 = S1 +M1. S1 is the discrete approximation to the weak form of the first

term in (1.1), and M1 is the discrete approximation to the weak form of the second
term in (1.1). The discrete null-space analog of (1.2) is represented by the rectangular
matrix T1. This matrix is a discrete gradient operator and is trivial to construct. In
particular, each row of T1 contains at most two nonzeros (±1) and corresponds to an
edge between two nodes in the associated nodal graph [5]. The following relationship
holds:

S1T1 = Θ,

where Θ denotes the zero matrix. In this paper, we use the notation (curl,curl) to
refer to S1 as it emphasizes the character of the operator. Edge element discretiza-
tions of the eddy current formulation with the discrete null-space property have been
investigated for both tetrahedral and hexahedral meshes. While the multigrid tech-
niques described here are not restricted to hexahedral meshes, all of our experiments
have been with hexahedral meshes, where it is assumed that the domain of interest
can in fact be covered by such elements [4, 16].

The focus of this paper is the solution of the discrete linear system given in (1.3)
and the special treatment required by the multigrid smoother and the multigrid grid
transfers to address the large (curl,curl) kernel. Several groups have considered this
problem. Hiptmair developed a geometric multigrid method with h-independent (or
mesh-independent) convergence rates in [10]. Reitzinger and Schöberl proposed an
initial algebraic multigrid (AMG) method for Maxwell’s equations [11] that maintains
a coarse grid notion of (1.2) but does not have mesh-independent convergence rates.
We considered modifications to Reitzinger and Schöberl’s strategy for choosing a
prolongator in a previous paper [3]. The current paper proposes an improvement to
the intergrid transfers that is related to those explored in [3]. The resulting method
performs noticeably better than the previous method in terms of both multigrid cost
per iteration and convergence. In addition, the new prolongator is much simpler
to understand and implement and leads to nearly h-independent convergence of a
multigrid W-cycle on some model problems.

2. Background. In this section, we give an overview of multigrid, as well as
previous work in applying multigrid to Maxwell’s equations.

2.1. Multigrid Overview. Multigrid methods (e.g., [9], [12], [8]) are among the
most efficient iterative algorithms for solving the linear system, Ax = b, associated
with elliptic partial differential equations. The basic idea is to damp errors by utilizing
multiple resolutions in the iterative scheme. High-energy (or oscillatory) components
are effectively reduced through a simple smoothing procedure, while the low-energy
(or smooth) components are tackled using an auxiliary lower resolution version of the
problem (coarse grid). The idea is applied recursively on the next coarser level. An
example multilevel iteration is given in Figure 2.1 to solve

A1u1 = b1. (2.1)

The two operators needed to specify the multigrid method fully are the relaxation
procedures, Rk, k = 1, . . . , Nlevels, and the grid transfers, Pk, k = 2, . . . , Nlevels. Note
that Pk is an interpolation operator that transfers grid information from level k to
level k − 1. The coarse grid discretization operator Ak+1 (k ≥ 1) is specified by the
Galerkin product

Ak+1 = PT
k+1AkPk+1. (2.2)
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// Solve Akuk = bk

procedure multilevel(Ak, bk, uk, k)
uk = Rk(Ak, bk, uk);
if ( k 6= Nlevels)

rk = bk −Akuk ;
Ak+1 = PT

k+1AkPk+1;
uk+1 = 0;
multilevel(Ak+1, P

T
k+1rk, uk+1, k + 1);

uk = uk + Pk+1uk+1;
uk = Rk(Ak, bk, uk);

Fig. 2.1. Multigrid V-cycle consisting of Nlevels grids to solve A1u1 = b1.

The key to fast convergence is the complementary nature of these two operators. That
is, errors not reduced by Rk must be well interpolated by Pk.

When grid transfers are defined using mesh and/or finite element information,
this is generally termed geometric multigrid. While geometric multigrid methods
often work well, they can be somewhat difficult to implement for highly unstructured
meshes with irregular boundaries (especially on parallel machines). Further, they
often rely on details of the specific simulation program. That is, applications are
forced to develop their own version of geometric multigrid where they supply a mesh
hierarchy and a means to move between grids. While potentially efficient, software
development can be time consuming and the resulting multigrid code may not be
well suited for other applications. In algebraic multigrid, however, only A1 and b1

are given, hence Rk and Pk must be deduced from purely algebraic principles. While
constructing multigrid methods via algebraic concepts presents certain challenges,
AMG can be used for several problem classes without requiring a major effort for
each application. In this paper, we focus on a strategy to determine the Pk’s based
on algebraic principles. It is assumed that A1 and b1 are given.

2.2. Geometric Multigrid for Maxwell’s Equations. A unique difficulty in
solving Maxwell’s equations arises from the kernel of the (curl,curl) operator. This
kernel includes the gradients of all differentiable scalar functions. Since the gradient of
a smooth function is smooth and the gradient of an oscillatory function is oscillatory, it
is clear that both smooth and oscillatory functions lie within the kernel. We denote the
range space of operator A by Ran(A). In the standard multigrid context, relaxation
must damp oscillatory errors inRan(T1) andRan(T⊥1 ), and the coarse grid correction
must approximate smooth errors in Ran(T1) and Ran(T⊥1 ). While the canonical
coarse grid transfers1 of a geometric multigrid method sufficiently approximate smooth
errors in Ran(T1) and Ran(T⊥1 ), a special relaxation procedure must be used so
that oscillatory errors in Ran(T1) are damped. This is because methods like Jacobi
and Gauss-Seidel rely on oscillatory error components being well represented in the
residual. When M1 is small compared to S1, however, errors in the kernel of the
(curl,curl) operator are not well represented. This can be seen by considering the

1Using the edge element basis functions.
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procedure distributed smoother (K(e)
1 , b, u)

Smooth on K
(e)
1 u = b

r = b1 −K
(e)
1 u

K̃1 = TT
1 K

(e)
1 T1 // = TT

1 M1T1

b̃ = TT
1 r, ũ = 0

Smooth on K̃1ũ = b̃
u = u + T1ũ

Fig. 2.2. Distributed Smoother for system (1.3).

following error decomposition:

ε = εT + εT⊥ εT ∈ Ran(T1), εT⊥ ∈ Ran(T⊥1 ), ||εT || ≈ ||εT⊥ ||
r = (S1 + M1)(εT + εT⊥)

= S1εT⊥ + M1(εT + εT⊥)
≈ S1εT⊥ when ||S1|| � ||M1||.

(2.3)

Hiptmair was essentially the first to propose a suitable relaxation procedure for
(1.3), and this led to a geometric multigrid method with h-independent convergence
rates [10]. This smoother is a specific instance of a more general idea termed dis-
tributed relaxation [7]. Specifically, a standard smoother is first applied to K

(e)
1 .

Then, a correction equation is formed and projected onto Ran(T1). Standard smooth-
ing is applied to the projected equation, and the correction is added into the previous
solution estimate. A summary of this smoother is given in Figure 2.2. It is important
to note that a basis for the kernel of the (curl,curl) operator must be explicitly con-
structed on all levels within a multigrid scheme to apply this relaxation procedure.
A related smoother was considered in [15] for mixed finite element problems, and
alternative smoothers have been proposed by [2].

2.3. AMG for Maxwell’s Equations. While several good geometric multigrid
options now exist, the situation is not nearly so clear for algebraic multigrid methods.
The first practical AMG method for solving Maxwell’s equations was developed by
Reitzinger and Schöberl [11]. The principal idea of the method is to maintain the
representation of a discrete gradient and its relationship to the discrete (curl,curl)
operator on coarse meshes. Reitzinger and Schöberl achieve this by creating two
multigrid hierarchies. The primary hierarchy is a coarsening of the space where the
problem (1.3) lies. The interpolation operator is given by P

(e)
k , and the coarse grid

operator is given by the Galerkin product

K
(e)
k+1 = (P (e)

k )T K
(e)
k P

(e)
k .

This is the hierarchy that is used during the multigrid iterations. The other hierarchy
serves an auxiliary role and is used only in the setup phase to construct the intergrid
transfers P

(e)
k for the primary hierarchy.

To construct the auxiliary hierarchy, Reitzinger and Schöberl discretize the partial
differential equation ∫

Ω

σu · v +
∫

Ω

∇u · ∇v (2.4)
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using nodal finite elements on the same mesh as (1.1). This yields a matrix K
(n)
1 .

The matrix T1 is also needed for this algebraic multigrid method. T1 can be created
directly from the mesh. This is done by adding one matrix row for each edge in K

(e)
1

with the two nonzero entries corresponding to nodal degrees of freedom associated
with the mesh. It is also possible, however, to construct T1 using the matrix graph of
K

(n)
1 [5]. Specifically, each off-diagonal nonzero (i, j) in the upper triangular portion

of K
(n)
1 corresponds to a row in T1 containing a 1 and a −1 in columns i and j. This

implies that one way to build a coarse grid discrete “gradient”, T2, is to apply an
algebraic multigrid procedure to K

(n)
1 . This yields a prolongation operator, P

(n)
k , and

a coarse grid discretization matrix, K
(n)
2 = (P (n)

1 )T K
(n)
1 P

(n)
1 . The graph of K

(n)
2 can

then be used to define a coarse grid discrete gradient.
The auxiliary nodal hierarchy can be viewed as an explicit coarsening of the

(curl,curl) null space. The key question is now how to choose the interpolation, P
(e)
1 ,

so that T2 is precisely the null space of the coarse grid discrete (curl,curl) operator,

S2 = (P (e)
1 )T S1P

(e)
1 . (2.5)

Reitzinger and Schöberl showed that the following commuting relationship is necessary
and sufficient to maintain the null-space property on coarse grids:

P
(e)
k Tk+1 = TkP

(n)
k , (2.6)

where Tk, P
(n)
k , and P

(e)
k are the discrete gradient, nodal prolongator, and edge pro-

longator on the kth level. Specifically, assume that SkTk = Θ and that (2.6) holds.
Then,

Sk+1Tk+1 = (P (e)
k )T SkP

(e)
k Tk+1

= (P (e)
k )T SkTkP

(n)
k by (2.6)

= Θ.

Further discussions of the commuting property (2.6) are given in [11]. Thus, our
computational task is reduced to producing a P

(e)
k given Tk, Tk+1, and P

(n)
k such

that (2.6) holds. This will preserve the null space on coarse meshes and allow the
distributed relaxation procedure to be applied. To do this effectively, however, a
prolongation operator that maintains good approximation properties and leads to low
multigrid operator complexities (cost per multigrid iteration) is necessary.

Reitzinger and Schöberl proposed a strategy for computing a P
(e)
k that satisfies

(2.6) and gives low multigrid operator complexities. Specifically, coarse nodes are first
constructed by aggregating (or grouping) fine nodes together. P

(n)
k is now defined as

piecewise-constant interpolation from each coarse node to all of the fine nodes within
its aggregate. A coarse nodal discretization is then defined using P

(n)
k , K

(n)
k and the

Galerkin product, (2.2). Coarse edges in the coarse nodal matrix simply link coarse
nodes from adjacent aggregates. P

(e)
k is then defined by injecting the value from each

coarse edge to all the fine edges connecting the two adjacent aggregates associated
with the coarse edge. We omit the details of the prolongator and refer the reader to
[11] and [3]. Figure 2.3 depicts a simple example for a single nodal basis function and
a single edge basis function in the respective prolongators.

Reitzinger and Schöberl’s paper properly identified the importance of (2.6). Their
AMG method is easy to compute, maintains low multigrid operator complexity, and
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(a) Node interpola-
tion.
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(b) Edge interpolation.

Fig. 2.3. (a) Reitzinger and Schöberl piecewise-constant nodal interpolation. The coarse grid
value (in square) is interpolated only to nodes that form the aggregate (in circles). (b) Interpolation

on a uniform mesh within a single edge of P
(e)
k . The coarse grid edge (heavy solid) with value c is

interpolated only to fine edges (heavy dashed) passing between nodal aggregates (in dashed boxes).

Grid Size CG/AMG iterations
15× 15 16
25× 25 24
50× 50 42

100× 100 76
150× 150 93

Table 2.1
Number of iterations to reduce initial residual by 1010 with the Reitzinger and Schöberl AMG

method applied to a model problem on the unit square with σ = 10−3.

is relatively insensitive to the electric conductivity. The main drawback, however,
is that the prolongator has poor approximation properties, and so multigrid conver-
gence rates suffer. In particular, h-independent algebraic multigrid convergence rates
typically rely on accurately approximating functions with smaller energy norm (i.e.
algebraically smooth functions) on coarse meshes. Within smoothed aggregation, for
example, the theory relies on bounding the energy of all the coarser grid basis func-
tions independent of mesh spacing. This is not possible with piecewise-constant basis
functions. The Reitzinger and Schöberl edge prolongation operators are built using
piecewise-constant interpolation for the nodal space and actually are less accurate
than piecewise constant. In fact, when interpolating coarse grid edges, there are no
contributions to fine grid edges that are contained completely within an aggregate.
Contributions are made only to fine grid edges that connect the two aggregates defin-
ing the coarse grid edge. Thus, it is not possible to bound the energy of the coarse grid
basis functions and so it is not surprising that the resulting method has convergence
rates that are far from h-independent. Table 2.1 illustrates the growth in iterations as
the mesh size increases for a model two-dimensional problem using a preconditioned
conjugate gradient algorithm where a Reitzinger and Schöberl AMG method is used
in a V(1,1) cycle.2 The smoother consists of three steps: one symmetric Gauss-Seidel
iteration on the entire system, one symmetric Gauss-Seidel iteration on the null-space

2V(1,1) indicates a V-cycle multigrid algorithm is used with 1 pre-smoothing sweep and 1 post-
smoothing sweep on each level.
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projected equations, and a final symmetric Gauss-Seidel iteration on the entire sys-
tem. It is clear for very large problems that this lack of scalability will be prohibitive.
Therefore, the remainder of this paper describes a new prolongation operator that
improves scalability.

3. An Improved Prolongation Operator. Consider the new prolongation
operator

P(e)
k = (I − αD−1

S,kSk + βTkD−1
T,kTT

k Mk)P (e)
k , (3.1)

where P
(e)
k is the Reitzinger and Schöberl edge prolongator, Sk is the (curl,curl) term

on the kth level, Mk is the mass term on the kth level, DS,k is the diagonal of Sk,
DT,k is the diagonal of TT

k MkTk, and α and β are damping parameters. It is easy to
show that P(e)

k still satisfies the commuting properties. Namely,

P(e)
k Tk+1 = (I − αD−1

S,kSk + βTkD−1
T,kTT

k Mk)P (e)
k Tk+1

= (I − αD−1
S,kSk + βTkD−1

T,kTT
k Mk)TkP

(n)
k by (2.6)

= (I + βTkD−1
T,kTT

k Mk)TkP
(n)
k using SkTk = Θ

= Tk(I + βD−1
T,kTT

k MkTk)P (n)
k

= TkP(n)
k ,

where

P(n)
k = (I + βD−1

T,kTT
k MkTk)P (n)

k . (3.2)

Thus, the commuting property is satisfied when the nodal prolongator is given by
P(n)

k .
The new nodal prolongator (3.2) can be viewed as a smoothed version of the orig-

inal piecewise-constant nodal interpolation operator. This terminology comes from
the smoothed aggregation multigrid method [14, 13]. In smoothed aggregation multi-
grid, an original (or tentative) prolongator is developed. Then, a new prolongator,
Q, is produced by lowering the energy of the tentative prolongator via the following
damped Jacobi iteration:

Q = (I − γD−1A)QT , (3.3)

where QT is a tentative prolongator, A is some fine grid discretization matrix, D is the
diagonal of A, and γ is a damping parameter. When applied to a Poisson operator,
the tentative prolongator corresponds to piecewise-constant interpolation. For this
paper, it is important to understand that the smoothed prolongator has significantly
better approximation properties than piecewise-constant interpolation and that the
smoothing step is critical to obtaining h-independent multigrid convergence rates for
the nodal problem [6, 13, 14].

In our context, it is reasonable to expect that a smoothed nodal prolongator
might give rise to an improved edge prolongator because low-energy modes are better
approximated. If the nodal problem is given by

K
(n)
1 = TT

1 K
(e)
1 T1 = TT

1 M1T1 (3.4)
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instead of discretizing (2.4), then Equations (3.2) and (3.3) are now identical with
γ = β and A = K

(n)
1 . That is, the new nodal prolongator corresponds to a smoothed

version of the original piecewise-constant prolongator. Using (3.4) has the distinct
advantage that the user no longer needs to provide a separate nodal discretization
matrix. Within the multigrid method, matrix K

(n)
1 can be constructed automatically

as described in (3.4) by operators that are available. In fact, K
(n)
1 also appears in the

distributed relaxation method in Figure 2.2 and so is already computed and available
within the method. Additionally, the operator TT

k MkTk still incorporates material
properties, σ, which are advantageous to utilize in the nodal aggregation phase.

It is now clear that the βTkD−1
T,kTT

k Mk term in (3.1) corresponds to smoothing
the nodal prolongator. To complete our understanding of this term, however, it is
necessary to look at the important role the nodal prolongator plays in the AMG
iterations (even though it does not appear explicitly). To this end, we consider the
Galerkin product and the coarse grid nodal matrix obtained by projecting the coarse
edge operator into the null space. It is important to keep in mind that this matrix
(which is used in relaxation) governs convergence in the null space. Specifically, we
have

K
(n)
k+1 = (P(n)

k )T K
(n)
k P(n)

k

= (P(n)
k )T TT

k K
(e)
k TkP(n)

k by (3.4)

= TT
k+1(P

(e)
k )T K

(e)
k P(e)

k Tk+1 by (2.6)

= TT
k+1K

(e)
k+1Tk+1

This implies that it is, in fact, the nodal interpolation operator that completely de-
termines the null-space properties of the discretization matrix on the coarse meshes.
Thus, an improved nodal prolongator improves the coarse discretization within the
null space.

Before concluding this discussion of nodal prolongators, it is important to make
one modification to (3.1). In particular, the Mk term can be simplified to significantly
reduce the nonzeros in both P(e) and the resulting coarse grid discretization matrices.
To do this, we replace Mk by M̃k, where M̃k is obtained by lumping the off-diagonal
elements in Mk to the diagonal. This is a well-known technique in approximating
mass matrices. In our context, it can be helpful in reducing the number of nonzeros
and does not affect the commuting property. As a result, we now have

P(e)
k = (I − αD−1

S,kSk + βTkD−1
T,kTT

k M̃k)P (e)
k . (3.5)

The αD−1
S,kSk term in (3.5) does not appear in the new nodal prolongator. In

fact, for a given nodal prolongator there are several possible edge prolongators that
satisfy the commuting property. To better understand the αD−1

S,kSk term, we rewrite
(3.5) as

P(e)
k = (I − αD−1

S,kSk)(I + βTkD−1
T,kTT

k M̃k)P (e)
k

= (I − αD−1
S,kSk)P̂(e)

k .
(3.6)

It can now be seen that P̂(e)
k is essentially a tentative edge prolongator obtained

using the smoothed nodal prolongator. To improve P̂(e)
k , a further smoothing step

in the edge space is performed to arrive at P(e)
k . This additional smoothing step is
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needed because the edge prolongator may not be as accurate (or as smooth) as the
corresponding nodal prolongator.

To better understand the relationship between nodal and smoothed prolongators,
consider an operator, Q(n), that corresponds to linear nodal interpolation on a uniform
mesh. Further, let us assume that we have obtained the operator Q(e) satisfying the
commuting equation:

Q(e)Tk+1 = TkQ(n). (3.7)

If the right-hand side of (3.7) is applied to a coarse grid linear function v, then
the resulting function is essentially constant. This follows from the fact that Q(n)v
produces a linear function; a discrete gradient Tk applied to Q(n)v yields a constant
function. Combining this with (3.7) implies that

Q(e)z = w, (3.8)

where w is a constant and z = Tk+1v (implying that z is a constant function). Clearly,
there are several Q(e) that satisfy (3.8), including inaccurate piecewise-constant edge
interpolation! The important conclusion to draw from this fact is that the commuting
relationship does not imply that the edge prolongator is as accurate as the corre-
sponding nodal prolongator. In our context, this has been observed experimentally
and motivates the application of an additional edge smoothing step (3.6) to improve
the properties of the edge prolongator.

To complete the prolongator description (3.5), we must choose the damping pa-
rameters α and β. These parameters are chosen according to standard smoothed
aggregation multigrid criteria, based on energy minimization [13]. Specifically,

α =
4
3
ρ(D−1

S,kSk)−1, (3.9)

and

β =
4
3
ρ(D−1

T,kTT
k MkTk)−1, (3.10)

where ρ(·) is the spectral radius. This spectral radius is estimated using a few (e.g. 5-
10) iterations of a symmetric eigenvalue solver (as in standard smoothed aggregation).

4. AMG Operator Complexity. The main AMG difficulty in solving (1.1) is
that the grid transfers must satisfy the commuting relationship and, at the same time,
be sufficiently accurate in both the null space and its complement. The remarkable
aspect of (3.5) is that it improves the accuracy of the Reitzinger and Schöberl pro-
longator in both the null space and its complement without adversely affecting the
overall cost per iteration of the AMG process. To see this, we first define multigrid
operator complexity as follows:

AMG operator complexity =
∑Nlevels

k=1 nnz(K(e)
k )

nnz(K(e)
1 )

. (4.1)

where nnz(A) is the number of nonzeros in the matrix A. Ideally, nnz(K(e)
k ) �

nnz(K(e)
1 ) for k > 1. This occurs when coarse grid matrices have significantly fewer

rows and only a modest increase in the number of nonzeros per row relative to K
(e)
1 .
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To analyze nonzero behavior, we look more closely at the coarse grid discretization
matrix given by the Galerkin formula:

K
(e)
k+1 = (P(e)

k )T K
(e)
k P(e)

k .

Substituting a simplified version of (3.5), we define

K̂
(e)
k+1 = (P (e)

k )T (I − Sk + Zk)K(e)
k (I − Sk + Zk)P (e)

k ,

where Zk = TkTT
k . K̂

(e)
k+1 is identical to K

(e)
k+1 when the damping parameters are one,

and the diagonal matrices are the identity in (3.5). These simplifications obviously
do not affect multigrid operator complexity. If we multiply the three inner terms and
keep only the higher order terms, we have

K̃
(e)
k+1 = (P (e)

k )T (SkK
(e)
k Sk − SkK

(e)
k Zk − ZkK

(e)
k Sk + ZkK

(e)
k Zk)P (e)

k . (4.2)

Once again, the nonzero pattern of K̃
(e)
k+1 is identical to that of K

(e)
k+1 as the higher

order terms govern this pattern. The multigrid operator complexity of the AMG it-
eration is connected to understanding how the number of nonzeros per row grows in
the above expression. For general unstructured matrices this is quite cumbersome.
However, for simple restricted cases it is possible to show how the number of nonzeros
behave. Specifically, consider a regular uniform mesh on a square. Let us further as-
sume that each aggregate is a perfect 3×3 brick (as depicted in Figure 2.3). Typically,
aggregates are defined by some greedy algorithm. A center node is picked, preferably
one not adjacent to existing aggregates, and then this node along with its immediate
neighbors defines a new aggregate. In the ideal case, perfect 3 × 3 bricks will be
formed when the discretization of (2.4) on a uniform grid yields a 9-point stencil or
when K(n) has the form (3.4) on a uniform grid. Though this case is idealized, it gives
us insight into the multigrid operator complexity growth we might expect in more re-
alistic settings. Clearly, if the number of nonzeros grows drastically in the ideal case,
one should expect high multigrid operator complexity in the non-ideal situation.

For the ideal case, it is possible to illustrate the support of a single basis function
(or column) in P

(e)
k and show how this support grows with the four terms in (4.2).

Specifically, consider a vector, v, with a set of nonzero edge entries denoted Ev. These
edges are incident to a set of nodes, denoted Nv, and a set of grid cells, denoted Cv.

The application of Sk or K
(e)
k to v results in a new vector with nonzero elements

in any edge contained in the cells Cv. The application of Zk to v results in nonzero
elements in any edge incident to Nv. Figures 4.1-4.4 show the multigrid operator
complexity details. The three vertical lines in the center represent the jth column of
P

(e)
k and the additional lines illustrate the support growth. The key point to notice

in the figures is that the support never touches bordering aggregates (aggregates
that are only partially illustrated). This implies that the jth column of K̃

(e)
k+1 is

zero for all coarse grid edges incident to these bordering aggregates. Thus, there are
only seven nonzeros in the jth column corresponding to the seven coarse edges that
connect the six central aggregates depicted in the figures. All of this means that
the nonzeros per row do not grow in this simple case as the original fine grid stencil
contains seven nonzeros. In three dimensions, the situation is identical when each
aggregate corresponds to a 3 × 3 × 3 brick. Here, there is once again no growth in
the number of nonzeros per row. Of course, ideal aggregates will not generally occur.
However, we have some confidence that the multigrid operator complexity will not
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Fig. 4.1. Nonzero edges due to ZkK
(e)
k ZkP

(e)
k term. denotes the three nonzero edges in

P
(e)
k ej where ej has only one nonzero in the jth position. denotes additional nonzero edges

in ZkP
(e)
k ej . denotes the extra nonzero edges in K

(e)
k ZkP

(e)
k ej and finally denotes the

remaining nonzero edges induced by ZkK
(e)
k ZkP

(e)
k ej .

Fig. 4.2. Nonzero edges due to SkK
(e)
k ZkP

(e)
k term. denotes the three nonzero edges in

P
(e)
k ej where ej has only one nonzero in the jth position. denotes additional nonzero edges

in ZkP
(e)
k ej . denotes the extra nonzero edges in K

(e)
k ZkP

(e)
k ej and finally denotes the

remaining nonzero edges induced by SkK
(e)
k ZkP

(e)
k ej .
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Fig. 4.3. Nonzero edges due to ZkK
(e)
k SkP

(e)
k term. denotes the three nonzero edges in

P
(e)
k ej where ej has only one nonzero in the jth position. denotes additional nonzero edges

in SkP
(e)
k ej . denotes the extra nonzero edges in K

(e)
k SkP

(e)
k ej and finally denotes the

remaining nonzero edges induced by ZkK
(e)
k SkP

(e)
k ej .

Fig. 4.4. Nonzero edges due to SkK
(e)
k SkP

(e)
k . term. denotes the three nonzero edges in

P
(e)
k ej where ej has only one nonzero in the jth position. denotes additional nonzero edges

in SkP
(e)
k ej . denotes the extra nonzero edges in K

(e)
k SkP

(e)
k ej and finally denotes the

remaining nonzero edges induced by SkK
(e)
k SkP

(e)
k ej .
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grow drastically. Computed complexities will be given with the numerical results to
support this claim.

5. Numerical Experiments. To assess the interpolation strategy proposed in
this paper, we compare three AMG methods. Each method uses P(e) with different
choices of α and β. See Table 5.1 for the choices of α and β. In each case a multigrid W-
cycle is used as a preconditioner for a conjugate gradient iteration. The one exception
is the first experiment, where we use both a V- and W-cycle to demonstrate the
efficacy of P(e)(α, β). The pre-smoother consists of two steps:

1. A damped Jacobi iteration. For an initial guess, u(0), and right-hand side, f ,
this gives u( 1

2 ) = u(0) +µ1D
−1(f −K

(e)
k u(0)) where D is the diagonal of K

(e)
k .

2. A damped Jacobi iteration for the projected equations. Defining D̃ as the
diagonal of TT

k K
(e)
k Tk gives u(1) = u( 1

2 ) + µ2TkD̃−1TT
k (f −K

(e)
k u( 1

2 )) .

These parameters are given by

µ1 =
60

31ρ(K(e)
k )

and µ2 =
60

31ρ(TT
k K

(e)
k Tk)

.

The damping parameters correspond to a first degree Chebyshev polynomial defined
over the interval [ρ(K(e)

k )/30, ρ(K(e)
k )] and [ρ(TT

k K
(e)
k Tk)/30, ρ(TT

k K
(e)
k Tk)], respec-

tively. The intervals effectively define the range of “high frequencies” that must be
damped by the smoother. The lower end point is given by dividing the upper end
point by the approximate coarsening rate (ratio of unknowns between the fine and
coarse meshes) of the multigrid algorithm. Details of this smoother can be found in
[1]. It is oriented toward damping high frequency errors and uses only an estimate of
the largest eigenvalue of the matrix. The post-smoother performs step 2 first and then
step 1, thus guaranteeing the symmetry of the preconditioner. For the uniform-grid
examples, a right-hand side is generated by taking a random vector and multiplying
by the discretization matrix. A zero initial guess is used for the uniform-grid exam-
ples.

P(e)(·, ·) Description of interpolants used in experiments
P(e)(0, 0) Reitzinger and Schöberl interpolation
P(e)(α, 0) Edge smoothed interpolation
P(e)(α, β) Edge and nodal smoothed interpolation

Table 5.1
Interpolation used in experiments. Parameters α, β are chosen by (3.9) and (3.10), respectively.

We use the following T -norm to evaluate convergence:

||r||T = ||r||2 + γ||TT
1 r||2. (5.1)

The idea of this norm is to assure that the residual is reduced in both the range space
and the null space of the (curl , curl) operator. This is needed to compensate for the
poor representation of the error when M1 is small and the two norm of the residual is
used. This can be seen from Equation (2.3). The factor γ in (5.1) is chosen so that the
two terms are initially on the same scale. For example, γ = h2/σ for Equation (1.1)
discretized on a uniform quadrilateral mesh with constant conductivity. In general,
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one can choose

γ =
||K(e)

1 v||2
||TT

1 K
(e)
1 v||2

,

where K
(e)
1 = S1 + M1 and v is a normalized random vector. In this way, we can

equilibrate the two terms by the relative sizes of S1 and M1. In our experiments the
iterations terminate when ||rfinal||T /||r0||T < 10−8, where rfinal is the final residual
and r0 is the initial residual.

Before proceeding with the experimental results, there are three practical imple-
mentation considerations that should be discussed. First, while in our analysis we
assumed that the mass term M1 is lumped, in practice we do not always lump. As
is shown in the experiments, not lumping can result in slightly higher, but still ac-
ceptable, multigrid operator complexities. The second is that the mass and stiffness
matrices must be projected separately (via the Galerkin product) due to the pres-
ence of Sk and M̃k in (3.5). This requires additional computation when compared
to directly projecting K

(e)
k (though this can be significantly reduced if Mk is lumped

before projection). There is, however, an important advantage in maintaining the
Mk’s with respect to numerical cancellation (i.e., rounding errors). Cancellation can
be significant when Sk is much larger than Mk and the nodal discretization (needed
in the distributed relaxation) is computed via TT

k K
(e)
k Tk. This cancellation can be

avoided by using TT
k MkTk to compute the nodal discretization. If it is absolutely

imperative that Sk and Mk not be stored explicitly (e.g. they are not available on
the finest mesh) and it is known that the conductivity is relatively constant, (3.5) can
be approximated. In particular, Mk can be ignored (equivalent to approximating it
by a multiple of the identity) and K

(e)
k can be used instead of Sk without significant

convergence degradation.
The third implementation issue concerns the choice of β. We have found in our

experimentation that convergence can be enhanced by using a larger β than that
given by standard smooth aggregation arguments, (3.10). The reason for this can
be seen in (3.6). Specifically, β determines not only the nodal prolongator, (3.2),
but also the tentative edge prolongator. While (3.10) is given to optimize the nodal
prolongator, it does not necessarily provide for the best tentative edge prolongator.
That is, higher values of β can yield a better starting tentative edge prolongators while
sacrificing a bit the nodal prolongator. We emphasize that having a good tentative
edge prolongator is crucial; for example, just smoothing the original Reitzinger and
Schöberl edge prolongator does not yield h-independent multigrid convergence rates.
When combined with an appropriate edge smoothing parameter, α, an appropriate
choice of β can yield an improved smoothed edge prolongator, P(e). This difficulty of
finding a single β that yields both suitable tentative edge prolongators and smoothed
nodal prolongators leads us to suspect that the convergence of the resulting method is
not always mesh-independent. We are still exploring alternatives to (3.10) that may
produce the best compromise.

5.1. AMG with constant conductivity. We first consider (1.1) discretized
with rectangular elements on the unit square with periodic boundary conditions and
a constant value of σ. Table 5.2 gives iteration counts and run times for CG pre-
conditioned with a V-cycle. Table 5.3 gives iteration counts and run times for CG
preconditioned with a W-cycle. Table 5.4 gives AMG multigrid operator complexity
results for the 810× 810 mesh.
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σ grid size P(e)(0, 0) P(e)(α, 0) P(e)(α, β)
30× 30 23/0.1 18/0.1 13/0.1

101 90× 90 40/1.6 26/1.2 16/0.9

270× 270 77/50.5 36/23.4 20/17.1

810× 810 167/1061.9 49/370.6 23/204.3

30× 30 27/0.1 21/0.1 14/0.1

10−1 90× 90 47/1.9 33/1.3 18/0.9

270× 270 80/52.7 50/35.1 21/17.2

810× 810 175/1113.5 74/555.7 25/184.4

30× 30 28/0.1 23/0.1 14/0.04

10−3 90× 90 48/2.0 35/1.5 18/0.9

270× 270 107/70.1 61/42.6 21/17.7

810× 810 175/1115.0 77/577.7 25/184.7

Table 5.2
Iteration counts/run times (in seconds) for the CG/AMG V(1,1) schemes on a 2D model

problem with constant conductivity σ.

There are several things to notice about the data in Tables 5.2 and 5.3. The
main observation is that AMG using the full P(e)(α, β) operator exhibits near h-
independence, as can be seen in Table 5.3. Neither P(e)(0, 0) (the original Reitzinger
and Schöberl operator) nor P(e)(α, 0) have h-independent convergence rates, even
with W-cycles. Smoothing alone (i.e., α 6= 0, β = 0) is beneficial but not enough for
grid independence. These improved convergence rates translate directly into signifi-
cantly improved run times (one example is more than five times faster). In addition,
for a fixed problem size, the iteration counts of the new prolongator is fairly insensi-
tive to the size of the conductivity for this model problem. This is highly desirable for
difficult problems with low conductivity. The operator complexity of the multigrid
hierarchy is given in Table 5.4, where the first line corresponds to the multigrid oper-
ator complexity for the original Reitzinger and Schöberl algorithm. The complexity
for AMG based on P(e)(α, β) requires some explanation. For larger σ, the mass in
the third term of (3.1) results in nonzero growth of the coarser level operators. The
contribution of the mass term drops with σ. For small σ, these entries can be dropped,
and we recover the nonzero pattern of P(e)(0, 0) and P(e)(α, 0). As mentioned in §4,
an alternative to using the true mass term is approximating it with a lumped version.
Although we did not use a mass approximation in this experiment, doing so has the
advantage that there is no growth in the multigrid operator complexities due to the
mass term. (See the final slotted-square problem for results using an approximation
to the mass matrix.)

Similar results are given in Table 5.5 for a three-dimensional cube. In this case,
convergence is independent of the mesh size for the W-cycles, the overall multgrid op-
erator complexity is quite low, and the new prolongator P(e)(α, β) results in significant
run time improvements compared to the original prolongator P(e)(0, 0). See Table 5.6
for multigrid operator complexities. We note that in the case of P(e)(α, β) we omitted
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σ grid size P(e)(0, 0) P(e)(α, 0) P(e)(α, β)
30× 30 20/0.1 17/0.1 13 / 0.1

101 90× 90 32/1.5 21/1.0 15 / 0.8

270× 270 58/39.6 26/19.5 15 / 13.3

810× 810 99/698.3 29/243.0 16 / 134.0

30× 30 23/0.1 20/0.1 13 / 0.1

10−1 90× 90 34/1.4 26/1.2 15 / 0.9

270× 270 60/41.1 32/24.8 15 / 14.4

810× 810 105/741.9 35/291.1 16 / 134.2

30× 30 25 / 0.1 21 / 0.1 13 / 0.1

10−3 90× 90 34 / 1.4 27 / 1.2 15 / 0.8

270× 270 71 / 49.7 46 / 34.9 15 / 13.7

810× 810 105/739.7 37 / 309.9 16 / 134.0

Table 5.3
Iteration counts/run times (in seconds) for the CG/AMG W(1,1) schemes on a 2D model

problem with constant conductivity σ.

method AMG complexity
P(e)(0, 0) 1.12
P(e)(α, 0) 1.12
P(e)(α, β) 1.12 to 1.51

Table 5.4
AMG multigrid operator complexities for 2D 810× 810 grid, σ ∈ {101, 10−1, 10−3}.

the mass term, M , from the third term of (3.1), i.e., we used only βTD−1TT (due to
difficulty in extracting just the mass term within our software). Therefore, we cannot
comment on the effect on multigrid operator complexity if the original M were used.
If M is lumped, however, clearly there should be no effect on the multigrid operator
complexities. We observe h-independent convergence rates for the model problem
even without M .

5.2. AMG with conductivity jumps in a 2D domain. For the second ex-
periment, we consider (1.1) discretized with rectangular elements on the unit square,
Ω, with periodic boundary conditions. The domain is split into two regions, Ω1 and
Ω2. Region Ω1 is given by [0, 1/3]2, and Ω2 = Ω\Ω1. In Ω1, the conductivity is either
σ1 = 10−3 or σ1 = 10−1, depending on the experiment. In Ω2, the conductivity is
σ2 = 1.0. The domain is depicted in Figure 5.1.

Results are given for a W-cycle in Table 5.7. As with the previous experiments,
only the P(e)(α, β) prolongator displays h-independence. There is iteration growth in
both P(e)(0, 0) and P(e)(α, 0) as the mesh size increases.

5.3. AMG on a nonorthogonal mesh. As our final computational example,
we consider a slotted unit square with a mixture of Neumann and Dirichlet boundary
conditions. The exact boundary conditions are given in Figure 5.2. Figure 5.3 illus-
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σ grid size P(e)(0, 0) P(e)(α, 0) P(e)(α, β)
15× 15× 15 19/0.9 19/1.1 19/1.3

101 45× 45× 45 30/79.7 20/55.5 20/69.9

135× 135× 135 57/5532.7 26/2601.4 19/1968.9†

15× 15× 15 20/1.0 21/1.1 21/1.5

10−1 45× 45× 45 34/89.3 22/60.9 21/64.3

135× 135× 135 65/6313.9 29/2913.9 20/2084.2†

15× 15× 15 20/1.0 22/1.1 22/1.5

10−3 45× 45× 45 34/85.9 24/64.0 21/61.9

135× 135× 135 78/7526.7 27/2729.5 19/1970.8†

Table 5.5
Iteration counts/run times (in seconds) for the CG/AMG W(1,1) schemes on a 3D model

problem with constant conductivity σ. †The mass, M , in (3.5) is omitted when defining the edge
prolongator.

method AMG complexity
P(e)(0, 0) 1.04
P(e)(α, 0) 1.04
P(e)(α, β) 1.04†

Table 5.6
AMG multigrid operator complexities for 3D 135 × 135 × 135 grid, σ ∈ {101, 10−1, 10−3}.

(†Note that we omitted the mass M in the third term when defining the edge prolongator.)

trates the computational domain for a mesh with 1,994 edges. Each sphere represents
a nodal grid point. The colors of the spheres give an indication of the nodal aggre-
gates used on the finest level. Due to color limitations in the visualization package, it
is difficult to entirely distinguish all the aggregates (especially when two aggregates
of similar color are adjacent to each other). However, it is clear that the aggregates
are certainly not uniform or regular. For these experiments, the following function is
used for the conductivity:

σ =
η

4000
(5− sin(2πxy + 3y)e(xy−2x)), (5.2)

where η is a scalar and the domain corresponds to 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Figure
5.4 shows a plot of (5.2) for η = 10 on a 33× 33 mesh on the unit square. The results
given in Table 5.8 illustrate the convergence for different values of η. These results
essentially mirror the other experiments given in this paper. In particular, the only
convergence rates that are nearly mesh independent correspond to P(e)(α, β).

In these experiments, the mass matrix has many nonzeros (almost as many as the
stiffness matrix). This is due to the nonorthogonality of the mesh. To avoid complex-
ity growth, a simple diagonal approximation to the mass matrix is used in (3.5). This
diagonal is obtained by simply summing the absolute values of the entries within each
row. While this is relatively crude, it seems to be sufficient for these problems. In
particular, the diagonal approximation ensures that the multigrid complexity is inde-
pendent of the mass term, and therefore σ, as discussed in §4. Multigrid complexities
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Ω1

Ω2

Fig. 5.1. Domain with two regions of differing conductivity and periodic boundary conditions.
In Ω2 the conductivity is σ2 = 1.0. In Ω1, the conductivity is a constant value, either σ1 =
10−1 or 10−3, depending on the experiment.

σ1, σ2 grid size P(e)(0, 0) P(e)(α, 0) P(e)(α, β)
30× 30 24/0.1 21/0.1 13/0.1

10−1, 1 90× 90 36/1.8 26/1.3 15/1.1

270× 270 62/41.5 31/24.0 15/15.1

810× 810 107/829.8 34/294.9 16/161.1

30× 30 24/0.1 21/0.1 14/0.1

10−3, 1 90× 90 36/1.8 27/1.4 15/1.1

270× 270 62/41.8 31/23.6 15/16.2

810× 810 107/823.9 35/302.1 16/159.0

Table 5.7
Iteration counts/run times (in seconds) for CG/AMG W(1,1) schemes for model problem (1.1)

with two regions of different conductivities. The domain is defined in Figure 5.1.

are given in Table 5.9. These complexities are very similar to those observed in the
previous experiments.

6. Conclusions. We have proposed a new AMG grid transfer for Maxwell’s
equations. This operator depends on two parameters that are easy to calculate. Both
the Reitzinger and Schöberl intergrid transfers and the smoothed intergrid transfers
in [3] are special instances of this new operator. Numerical experiments on model
problems show that an AMG method based on this new operator has superior itera-
tion counts and run times to previous operators. In certain cases, the AMG method
has h-independent convergence rates. In general, the new AMG/CG method demon-
strates improved convergence behavior and has only a slight growth in the number of
iterations as the mesh size increases. Future research includes analyzing the behavior
of this new method on systems with mass matrices that have coefficient jumps or that
have large variation in conductivity.
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